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Chapter 1

Introduction and Motivation

Environmental sounds carry a good deal of information about the surrounding environment,
from individual events, like a window breaking or a door knob, to the sound scene of a particular
setting, park or restaurant. Section 1.1 introduces the basic concepts and problems associated
with the computational analysis of sound scenes and events. We motivate the computational
problem by presenting a brief review of various applications where the methods can be used,
methods that are data-driven and analyze environmental sound information automatically. The
main differences between environmental and other major audio understanding such as automatic
speech recognition and music information retrieval is presented.

In order to motivate the field of sound recognition, let us consider the following example.
You are in your car and you say open the door you might want your car to understand your
voice command and open the car’s door. In that case we need a automated system that is able
to recognize spoken words. This problem is called in the academic world as Automatic Speech
Recognition (ASR). But we would like also to our smart car system to detect when a crystal
is broken a window is broken and to differentiate it from a bump in the chassis. We now need
machine understanding of another kind of sound. We can also go about it using a mechanical
sensor. But thanks to the ability of sound to propagate through sound and convey meaningful
information we can also detect a window breaking in a house even if we don’t have a mechanical
sensor as is the case in the car.

This way it is easy to see that sound provides clear advantages, but it also poses serious chal-
lenges. As a starting point, sound is a complex temporal signal which is very difficult to sum-
marize in a simple class identificator, an integer from 1 to n with n the number of classes we’re
interested in recognizing, i.e., a gunshot or a car crash. In order to have this human-like under-
standing of sound, researchers in the community have adapted machine learning approaches by
using datasets and training learning models of said datasets.

The availability of sound recording devices allows us deploy in the future smart audio sen-
sors in not just cars but homes, and parks in cities. Effectively achieving a smart city or a smart



home, different smart spaces. Also it has been proposed smart sound libraries where one can
use high-level search queries to explore and browse a given repository of sound and video. Film
and music creation would be greatly facilitated by automatic systems that are able to understand
sounds, music, and speech as humans do.

More technically, the purpose of this work is to present the design and development of
AclNet, an end-to-end neural network designed for Acoustic Event Detection (AED) of envi-
ronmental sounds. Environmental sounds are those common, everyday sounds that cannot be
simply categorized as speech or music. AED or environmental sound classification (ESC), as
was once called, is a relatively understudied research problem. However, it is vital in various
applications ranging from smart hearing aids, smart cities, smart home assistants and for the In-
ternet of Things (IoT) devices. Sound-intelligent devices may be able to aid in the surveillance
of protected natural parks, cities, and homes by allowing a rapid response to emergencies. In
the next section, we delve more deeply into some application domains of AED.

1.1 Basic Concepts and Terms

As mentioned previously, an environmental sound is defined as an everyday non-music, non-
speech sound [54]. However, this definition is not without ambiguity. There are multiple
cases of considerable overlap between the categories of speech, music and environment sounds.
Nowadays the emphasis is not so much in separating sounds in environmental versus non-
environmental but rather in the fundamental concept of an acoustic event and the secondary
derived concept of an acoustic scene. An acoustic event is a sound that is perceived as individ-
ual, in contrast a sound scene is a collection of sound events that tend to co-occur [6]. Moreover,
to add another layer of complexity to the conceptual framework used. Also, a sound event can
be polyphonic.

By its very nature a sound event has a beginning and an end. Hence, detection can be done
at multiple levels. The full temporal resolution detection outputs not just the class or type of
sound event but also the timestamps of beginning and end. Other types of detection can be done
at the whole sample level or at individual chunks of the input. Finally, tagging occurs when we
do multi-class classification at the level of a recording.

Usually paired with ESC are two other tasks: acoustic scene classification (ASC) and sound
event localization (SEL). In sound localization, the task is to output the spherical coordinates
of a multi-channel recording of a sound or multiple sound sources. Acoustic event detection
(AED), acoustic scene classification (ASC) and sound event localization (SEL) are three inter-
related tasks that allow a computer to understand sound similar to how animals perceive sound.
Most challenges have any variation of the three fundamental tasks.



1.2 Applications

Because of the ubiquity of sound signals in almost any situation and environment, numerous ap-
plications are possible including audio surveillance systems that detects dangerous sound events
[47], hearing aids [1], smart home monitoring [77] and video content highlight generation [5].
Let us move into some detail in each of these applications.

In particular, for automatic surveillance systems, sound analysis is used as a supporting sec-
ondary signal of video-based event detection. In principle, it is possible to recognize dangerous
events by the analysis of their acoustic properties. To achieve that goal, a feature extraction
and a classification technique must be specified. The system, then, gives one of two output
messages, one representing a no-danger situation and the other alarming the operator about that
a dangerous event has been detected. These systems are less complex because their output is
binary and thus higher accuracies, above 90%, can be achieved in conditions of low noise [47].

As another example of an application, let us consider the fact that as much as 13% popula-
tion in developed countries suffer from debilitating hearing loss [10]. However most of these
people don’t own a hearing aid, but even those who do don’t wear them because of irritating
and unpleasant amplified sounds or whistles produced as artefacts in these devices. This is be-
cause most hearing aids cannot automatically adapt to the changing acoustical environment the
user finds herself in. In order to enhance listening comprehension when the user goes from one
sound environment to another there have been developments of automatic sound classifiers that
provide the sound aid the acoustic context in which it is immersed [1]. Thus the objective of re-
searcher in this field is to perform classification followed by adaptation to increase intelligibilty
and comfort for users of hearing aids and preserve or enhance quality-of-life.

Now, in the context of a medical monitoring system, sound classification can provide vi-
tal information by taking into account calls of distress from the resident or patient and from
sounds from falls, for example. Progress in aids and assistive technologies may represent a
cost-efficient way to support the supply of informal care and official care provisions. Specially,
given the fact increased lifespans have caused the aging of the general population all the in-
dustrialized world. In this context the central challenge is to provide full access to high-quality
services for the elderly or a patient that may require care at their home. As a concrete example,
[77] take into account information from medical sensors is combined with sound detection to
identify bevhavior changes and ascertain the state of the patient in order to detect critical or a
distress situation.

Finally, consider the detection of certain events in video data, in what is called video high-
lighting. This allows an increase the ease of access, the ease of browsing and summarization
in general of audiovisual material. Similarly to our first example, audio is used as a support
signal that aids visual analysis. In other words, classification of audio events may create a more
thorough description of the video’s content or it may help the refinement of the detection of
highlights. Highlighting allows to select a portion of a long video and summarize it in the way
that it contains the most important developments in the match, when we are talking about sport
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videos, for example. As a concrete case, consider the study by Ballan et al. [5] where generic
audio concepts like excited speech, whistling, or domain specific are combined to produce dif-
ferent audio descriptors for later proccessing by a classificator such as SVM or deep belief
networks in order to highlight certain segments in sports videos.

Sound classification systems can be deployed as a sensor network in cities or natural parks.
And the density depends on the specific application. For example, more resolution in events
requires a denser network. Dense type networks maybe needed for smart city applications
where it is important to know precisely or have a precise map of the different sources of alarm
sound or noises as in [7]. Sound recognition systems that are part of a dense network sensor
node, and can send messages through the network to alert of intrusions to houses, car crashes at
intersections, or the sound of a chainsaw in a protected forest, for example.

As part of stand-alone home devices or IoT devices, domotics (give assistance to people
with disabilities), noise monitoring in cities, sound databases for database queries and search
by example, multimodal applications (assisting in the detection of actions in videos). The most
developed applications areas are four in number: sound retrieval in databases, bioacoustic ap-
plications, smart cities and smart homes. Following we will describe briefly each of these
application domains or areas.

In sound retrieval systems, it is importat to annotate sounds to order and have a sense of
order in the database, also there is the problem of searching with a sample query instead of
using the property of using the same technique. Also for video databases we can use sound
event detection to classify videos in the database. We have then sound categorization important
to annotate video and sounds and also to search by example (QBE) [9].

It is important to talk about query by example, audio fingerprinting in general audio as
opposed to music and so on. Audio-based content filtering or retrieval that is the case, right now
MFCC descriptors are widely used but we can use thumbnails based with detectors so that users
can remember and recognize more easily a given recording in the database. So we have three
forms of audio parameters that can be useful to understand an audio collection: fingerprinting,
search by content and thumbnailing.

Let us end this section with a general comment about the challenges that we see is present
in more or less all the applications mentioned above. One of the hindrances to a more active
research in this field is a widespread fragmentation and sparsity in reproducibility and compa-
rability. Most studies so far, have been studies on datasets that are either very specific, small
or proprietary. This sparcity of publicly standardized datasets and publicly available and diffi-
culty in accessing the original code for study replication, coupled with the lack of access of the
original code for study replication, make research reproducibility of research a great challenge.
That is in stark contrast to handwritten recognition or large-scale image classification which
have been prominently used for baseline comparisons. Only recently with ESC-50 [54] andini-
tiatives such as the Urban Sound project [60] bring some needed change for the community.



1.3 Problem Overview

To help the reader better understand the core of the task of acoustic event recognition, we now
provide a high-level description of the problem and the motivation for our proposed approach.
Along the way we can gain a better understanding of some of the design choices and overall
approach path taken.

Imagine that we want to build a detector of dog barks for a disabled person, a deaf inhabitant
of a home, i.e, a smart detector of dog barks. If we would like it to be automatic, how can I
go about programming such a detector? Computers don’t have ears like us, all they "see" is a
waveform.

One way to do it, would be to look at the waveform of a dog bark and measure the zero
crossings for example, which give you a rough sense of the periodicity of the sound. Another
would be to look at the envelope of the waveform and the time where its peak occurs (the attack
time) of the sound. Also, if you know some things about Fourier analysis you could also look
at spectrograms, which are time-frequency representations of sound. Similarly to waveforms,
sound experts measure envelopes and things like the lowest frequency component known as the
fundamental frequency (F_0).

A third class of features could be the ones that take inspiration from our own perceptual
experiences with sound, for example, loudness or timbre, or brightness of the sound. We could
ask people about what kind of characteristics they "feel" when they hear examples of dog barks.
These class of features is called psychoacoustic features.

After analyzing many waveforms we have come to establish some patterns of association in
the acoustic properties of dog barks, its features. For example, for signals that have this amount
of zero crossings and attack time, if the fundamental frequency is greater than 10 Hz it is very
likely that the signal represents a dog bark. Or, if the amplitude is more than 50 dB and the rate
of the decay of the temporal envelope is this high, you can look at the fundamental frequency to
decide into bark and non-bark sound. That kind of knowledge can be succintly represented/put
in a decision tree. In general, once you have a set of features each with a threshold value or
values one can come up with a decision tree of that form. A decision tree can be easily converted
to pseudocode so that a computer programmer could translate that to a suitable programming
language and the pattern dog bark detector can be run in a computer system, be it a smartphone,
laptop, embedded computer like the one there are in microwaves and cars.

That would be what could be called the analytic-deductic method of solving the problem of
detecting dog barks from noise automatically via a computer. And it requires a large amount
of time and effort to discover this patterns in the features of dog barks. However, there is a
completely different approach that is also possible. Imagine that after many hours of being
exposed to waveforms of barks I have become very good at identifying barks of dogs just
by looking at the waveforms, I’ve become an expert recognizer of barks. It has become a gut-
feeling that with good accuracy can give very good results. I have acquired a implicit knowledge



that is very hard or impossible to describe how I do it. This mode of solving the problem of
detection could be labeled as empirical-inductive because it arises from me being exposed to a
large number of examples of waveforms. The same thing can be said to any other representation
of sounds like spectrograms. Machine learning systems like the one presented in this work are a
form of empirical-inductive systems, that automize the kind of gut-feeling decision making that
humans do. They are equivalent to a form of perception together with decision making. And
that is why they are said to have intelligence, or be a form of cognitive technologies.

There are many machine learning models available, but neural networks are the ones that
have the capacity to perform well given enough data and have the property similar to our one
sense of hearing, taking the raw audio and making a classification decision. But how do they
do it? How do neural networks work? A rough explanation would be the following. In artifical
neural networks, neurons are represented by a single real number, also called an activation.
This neuronal unit is connected to others neurons through a set of weights (more real numbers)
that are also called parameters, And this parameters are updated through a training procedure,
similar to the process of going through a lot of pictures of sounds and getting used to recognize
them by intuition.

This way the key components of the system can be introduced as follows:

1. A dataset with supervision, that is, we know in advance what class any given sound of the
dataset belongs to.

2. A neural network, which maps input sounds to a list of class probabilities. The length of
this list is equal to the number of classes that we wish to classify.

1.4 Problem Statement

The goal of this work is to describe the design and implementation of a neuronal classifier (a
deep convolutional neural network) of acoustic events taken from the ESC-50 environmental
sound dataset with good level of accuracy using few parameters by applying an end-to-end
training methodology and comparing it with transference and the state-of-the-art.



Chapter 11

Prior Work

In this chapter we present the two diverging schools of approaching the problem of sound recog-
nition: feature engineering and end-to-end learning. Special emphasis is put on the main area of
concern of this work: automated recognition of environmental sounds. Environmental sounds
have been traditionally been classified with the use handcrafted features, see section 2.1. How-
ever, nowadays artificial neural network approaches and big data methods are starting to domi-
nate the field. We explain this new paradigm in section 2.2. Finally, in the last and third section,
we explain an intermediary approach which seeks to learn features separatedly from learning a
discriminator model, section 2.3.

2.1 Feature Engineering

Handcrafted features are those that are obtained through the use of pre-defined operations that
extract a set of real numbers (known as features) from the input signal so that the new set of
features is a better representation of the input, where "better" is defined based on the kind of
downstream tasks. So, for example, a given set of handcrafted features might be good for certain
downstream task like speech recognition but not for music genre classification; or, likewise, the
representation is fit for speech recognition but not for speech enhancement, and so on.

Therefore, hand-engineered features and the procedure to obtain them had to be modified or
tailored according to the problem at hand by the system engineer. This is in contrast to automat-
ically obtaining said features, see next section for that approach. Hand-engineered features can
be categorized in frequency-based (or spectral features), time-based or perceptually-motivated.

Let us discuss some of the most salient properties of the single most used spectral feature
used in machine listening: mel-filterbanks. The set of operations to extract them are the follow-
ing: first, a short-time Fourier transform (STFT) is computed; then a triangular bandpass filter
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is applied. Those filters in the filterbank are spaced on a logarithmic scale (the mel-scale) that
is designed to reproduce the non-linear relation between frequency and human perception of
pitch [68]. Finally, the resulting features are compressed logarithmically; and similarly to the
steps before, this one is designed to reproduce the psychophysical finding that humans have a
non-linear sensitivity to loudness [22], see the following equation:

p—klnséo 2.1

Equation 2.1 is called Fechner’s law for its proponent and here p denotes the perceived level,
k a constant, and S the volume of a sound or intensity level of a stimulus, more generally. It
is important to note that this approach of replicating human sound perception has been histori-
cally successful with the well-known work of [19] where they compared different handcrafted
features and concluded that mel-filterbanks were the best for word recognition. That result and
many others has also been reviewed in the work [49]. A landmark theoretical result was ob-
tained decades after the initial proposal of mel-filterbanks by [2], who showed that this type
human-inspired filters exhibit invariance to temporal shifts and small deformations. All very
beneficial properties for the purposes of machine learning. Despite of all these benefits and
evidence of performant capabilities, there are some problems associated with them. First, the
original experiments that led to their design could not be replicated according to [27], prompt-
ing the authors of said studies to proclaim that the original studies aren’t valid because of their
disqualifying bias.

Other authors have revised the original scale. O’ Shaughnessy in his textbook [50] and later
in the study by Umesh et al. [76]. Yet, other investigators have inquired in alternatives to log-
compression like obtaining the tenth root of the signal, [61], or cubic root, [48]. Despite all
these considerations, some of the aforementioned biases may be beneficial for some application
domains but not for others as we explained before. That is when the power of automatically-
generated features as opposed to manually-created can be gleamed. Inspired in this new way of
thinking about feature extraction we have two different approaches, learning the feature extrac-
tor jointly with the feature discriminator as in modern deep learning techniques, or learning one
first and then the other, as in the feature learning community approach, Sect 2.3.

Finally, we can combine the mel scale and the cepstral coefficient to obtain MFCCs a well-
known and popular feature of speech that allow the decomposition of gearbox and oral cavity
[63]. Amazingly, MFCCs were the state-of-the-art before deep learning and feature learning
took off. The main drawback of these other handcrafted features, other than mel-filterbanks, is
that, the performance was usually marginal or patchy, that is, applied to some sounds but not
all.

The introduction of deep learning techniques in this context has slowly begun in the last
few years. However, these efforts are still mostly limited to analyzing highly pre-processed
acoustic features. [3], [39], [55]. At the same time, classification of environmental sounds
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is still predominantly based on applying general classifiers, such as support vector machines,
hidden markov models, and gaussian mixture models, to manually extract features. For more
information on said feature engineering methods and the general classifiers thereby used see the
following reviews for a detailed analysis [12], and [6].

2.2 Deep Structured Learning

Deep Structured Learning, or just Deep Learning (DL) [43], is a relatively recent methodology
that relies on a hierarchy of feature extractors. Besides hierarchical representations and high-
layer count another features of this subfield is the very large model size, in terms of parameter
count, and the very large datasets which these high-capacity models are able to fit. It began to
be a popular methodology since applied to image classification and winning the ImageNet [57]
contest by a wide margin. Now the techniques have been transferred to other machine learning
tasks and data domains, such as speech and text. In particular, recent works have addresssed the
problem of acoustic event detection with deep neural networks. Following is mainly a historical
account of the development of deep models for sound classification.

2.2.1 Beginnings: ESC-50 and PiczakNet

In 2014, sound researcher Karol Piczak at Warsaw University introduced the ESC-50 dataset
[54] pooled from the Freesound sound-sharing site so that a total of 2,000 sound examples of
5 seconds could be further enhance improve the research on AED. In the same year, Piczak
published the first architecture [53] to solve ESC-50 classification. The input is logmel spectro-
grams or MFCCs plus delta-MFCCs. The network proposed by Piczak are still relevant despite
their being forerunners specially when combined with powerful feature learning techniques that
augment the filterbank beyond simple logmel and logmel deltas. See our discussion of feature
learning below.

2.2.2 Important Developments: Audio Set and Transference Methodolo-
gies

During the following years many innovative developments appeared in the literature. Prominent
among these novel approaches is the concept topic of transference. Knowledge transfer [42], as
is sometimes called, can be done across modalities, like from video to sound as in SoundNet.
Aytar’s SoundNet [4] which uses a teacher-student framework to transfer embeddings from
one modality (visual) to another (sound). Using videos from the video-sharing site Youtube
the researchers trained a sound detecting network without the need for labels or supervision.
Kumar et al. [42] transferred from applied a more conventional form of transference, sound to
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sound in a way called transductive because the it was across different sound tasks. The novelty
resided in the thoroughness and complexity of the transferred modes approaches.

Following closely the big data trends from other fields of machine learning, AudioSet [24]
was introduced as a very large-scale natural sound dataset with its own ontology of sounds.
This allowed Kumar et al. [42] to try transfer learning as a pivot, pioneering the application
in applying transference from one audio dataset to another of the same type. And this work
serves as an inspiration and model for our own transference efforts. With a large-scale dataset
in hand now bigger more complex models were used to solve audio classification problem and
the general problem of general sound recognition. In [30], the researchers tried out well-known
famous standard well-trodden models as ResNets and VGG-like [66] networks.

Finally, another very innovative approach to sound recognition was taken by EnvNets [73].
The researchers proposed the vital, at least for this work, method of end-to-end learning for
acoustic detection. EnvNets use a transpose operation and treat the feature maps obtained in
the first stage of feature extraction as spectrograms. This strategy was inspired by a speech
recognition work, namely [59]. While the accuracy was not perfect further developments such
as audio-specific augmentation (see Section 4.2.1) and between class learning [74] increased
the performance of EnvNets to a close second (84% five-fold accuracy with 48kHz sampling
rate).

For a more thorough coverage of current deep learning practices and methods, as well as
their application to different domains, see recent published textbooks on the topic of deep learn-
ing in general: [26], speech recognition [80], and general deep learning from the authors of the
previous work [20].

2.2.3 Contemporary Practices and Challenges

ConvNets since their inception have been modifying and improving mainly through the devel-
opment, among these developments are fully convolutional topologies, global average pooling,
strided convolutions instead of pooling layers, et. Dai et al. [18] applied these modern improve-
ments to train very deep one-dimensional convnets for raw audio. Thus, just like EnvNets,
DaiNets are also another end-to-end networks. Besides the developments there are also long-
standing problems and questions that are very important today. Those questions include: How
to introduce mixing into the training procedure? Tokozume et al. [74] tried to predict the
mixing ratio. How should transference be done? Can it be done without supervision, that is
unsupervised training or self-supervised approaches.

Deep learning approaches still pose the challenge of high memory and computing needs, so
nowadays alternatives such as non-negative matrix factorization (NMF) [8] are very much in
the research schedule of various groups. NMF, in particular, is a form of feature learning that
promises good accuracy with lower resource requirements. Another form of performant feature
learning is ConvRBM for filterbank learning as described in Sect. 2.3. Like non-negative
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factorization, it promises economical means of achieving good performance. However, the
high-end of performance is nowadays captured wholly by the heavy and deep models of deep
learning and big data.

We can envision that in the future, a move to self-attention is possible. Self-attention [15]
is another tool in the toolbox of deep learning that allows to be in the know. RNNs and DNNs
are not very useful because of the high dimensionality of sound, the important aspect of sound
is that there is a lot of redundancy in the time domain signals. For processing sound, we need
an effective way to cope with the high sampling rate. Convolution with pooling is the standard
approach, although as we have seen two-dimensional convolutions might not be appropriate.
However one-dimensional convolutions are advisable, and so are two-dimensional convnets
with self-attention.

2.3 Feature learning

An approach that lies between end-to-end learning approaches and feature engineering is feature
learning. The relation between the three approaches to supervised classification is discussed in
Section 3.2.2, here we are going to focus on previous works that apply feature learning to the
sound collection, ESC-50. The most performant of these previous efforts is Sailor convolutional
boltzmann machine to create a new set of filter bank to do filter bank learning by doing recon-
struction the result was a set of filters that resembled the gammatone filters for some frequencies
and the fourier filters for other, these filters when combined with the scores of a different Picza-
kNet would give much better results, an improve with respect to PiczakNet. When Sailor et al.’s
ConvRBM [58] is fused with PiczakNet at the level of the output scores (class logits) gives 86%
versus the best result for end-to-end learning 85% (cite our aclnet paper) with 48 kHz sampling
rate.

The importance of this prior work is that ConvRBM combined with two Piczak’s networks
[53] give an outstanding good performance with extraordinarily low parameter requirements.
This economical performance system can be leverage for constrained applications because of
the peanuts size of the Piczak Network and the low cost of learned filterbank. In chapter 5,
where we discuss the results and compare with other models there is a greater discussion about
the tradeoffs between models. For now, we can state that it is a hard baseline to beat but that
transfer learning did the job for deeper more complex of higher capacity models.
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Chapter 111

Theoretical Framework

The main goal of this chapter is to provide the theoretical foundations in order to understand the
mathematics and the main conceptual tools to engage in an informed discussion and analysis
and critique that will be covered in the following chapters. Hence, this chapter starts with an
introduction of the important concept of spectrograms, how are they are calculated from a time-
varying sound signal. WHy are they used their use and function and advatnages oft his use.
Later we introduce the main methodology of this work: end-to-end training of deep learning
models. Later, in the third and last section the architectural model chosen of our detector is
described to some depth: convolutional neural networks.

3.1 Spectral Analysis

Sound signals, to be able to be processed by computers, need to be discrete in time and am-
plitude. Sound digitization is the process of mapping a continous-time signal to discrete time
(sampling) and from continuous amplitude to discrete amplitude values (quantization). Thus
to do spectral decomposition to digitized sound the correct transformation is a discrete time
fourier transform (DTFT) that is discrete itself (discrete fourier transform).

Sampling has an interesting relationship with spectral analysis. This relationship is encap-
sulated by the Nyquist Theorem, which relates in which sampling ( f;) is done and the frequency
range we discussed in the description of the short-time FT.

Quantization is done with a piece of hardware called analog-to-digital converter and usual
output values are 16-bit or 48-bit integers that are able to describe 32,768 and 140,737¢9 signal
values, respectively. The number possible signal amplitudes is the bit depth of a digital sound
file format is the number of levels used in the quantization and corresponds to the resolution of
the signal or the image in pixels.
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Spectrograms, also called sonograms when extracted from sound, are a compact time-
frequency representation of signals. Spectrograms are computed using the short-time Fourier
transform, a special form of a Fourier Transform (SFTF). There are, in fact, two types of spec-
trograms: amplitude and phase spectrograms. However, phase spectrograms are usually not
taken into consideration, because of the low importance and relevance for signal processing
further down. Therefore, when speaking of amplitude spectrograms it is commonly abreviated
as spectrograms.

The Short-time Fourier Transform, or STFT, is the application of the Fourier Transform
(FT) at each step or frame of the signal. The signal is supposed to be stationary, or periodic
within the time frame. Whenever the STFT is used three parameters are needed to specify it
completely, the hop size, the window or frame length and the windowing function used. The
usual windowing functions are Hamming and Hanning, and their purpose is the smooth out the
signal at the boundaries of the frame.

Summing up, the parameters to fully define a STFT are: 1) hop length, 2) frame length (or
size), 3) windowing function, 4) frequency range (the filterbank). The hop length is chosen so
that there is some overlap between one frame and the next. A common overlap value is 50% and
makes sure that there is some correlation between one FT and the next. There is some complete
notion of stationarity. This notion of stationarity is very important principle that underlies the
reason the motivation or the explanation of why we can use STFT, is admissible.

Common windowing functions are Hamming and Hanning [45]. Both functions have in
common that they taper off (i.e. approach zero smoothly) at the at boundaries. This type of
Windowing allows the windowed function to satisfy the requirements of the Fourier Transform,
that is the periodicity constraint, when a signal is windowed both the beginning and end is zero
and thus free of jumps or discontinuities when the windowed signal is extended by repeating
infinitely before in time and in the future.

The frequency range is important, specially the nonlinear frequency ranges that are based on
simple psychoacoustics. Logmel is the prime example. Piczak [53] uses also the logmal center
frequencies and the logmel deltas. As a preliminary step before obtaining a given spectral
feature set, the waveform is converted to a frequency domain representation. The frequency-
domain representation on a linear scale may be obtained with a discrete-time Fourier transform
(DFT):

inf
X(f)= Y x(n)exp(—i2rfn) (3.1)

n=— inf

The resulting representation X (f) is periodic with periodicity equal to the sampling fre-
quency and the frequency f = f,/2 is called Nyquist frequency. The x(n) spectral representa-
tion can be recovered from the spectral representation by way of the inverse Fourier transform
in discrete time (IDFT). In practice a windowed frame of length N of the signal z(n) is used
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to apply the DFT. This is referred in the literature as short-time Fourier Transform (STFT). The
equation for STFT is:

F

—i2mif
N

X, 1) = ) wk)z(GN + k) exp(

0

) (3.2)

B
Il

where w(k) is the windowing function (rectangular, Hanning, Hamming, etc) used to smooth
out some of the effects of the discrete Fourier transform approximation, and to make the signal
periodic and continuous at the edges of the frames. When there is no overlap as in Eq. 3.2 the
hop between frames is equal to the length of the frames (/V). However it is commonplace to
choose a hop that is smaller than the frame length N to allow for some overlap.

Oftentimes specific frequency bands should be enhanced while others are to be attenuated
in order to facilitate the work of a discriminator that takes the frequency bands as input. We
now present the most common filterbanks, set of filters that enhance or attenuate certain bands
according to a mathematical law.

Equivalent rectangular bandwidth (ERB) scale: This representation changes the center
frequency and bandwidth to approximate something similar to auditory filters in the cochlea
[25]:

_ f
ERB(f) = 24.7 x (4.371000 + 1) (3.3)

Gammatone filters: They are filters whose impulse response is a sinusoidal modulating
wave by an envelope that has the form of a scaled gamma distribution function. This impulse
function gamma(n) is given by:

gamma(n) = an”" ! exp(—27bn)cos (2w fon + @) (3.4)

where a is the amplitude, + is the filter order and b is the temporal decay constant, f,. and ®
the frequency and phase of the carrier, respectively

Mel scale: This scale approximates the psychological human perception of pitches of pure
sounds. The analytic expression that relates the linear frequency scale (in Hz) and the mel scale

1S:
1000 f
mel(f) = Tog 2 log (1 + —100()) (3.5)

17



3.2 Supervised End-to-End Learning

In this section we are going to explain the differences and compare the different approaches
to feature extraction, those are: feature engineering, feature learning and end-to-end training.
While the first two were already explained in Section 2.1 and Section 2.3, respectively. Here
we are going to give them a fresh look through the comparison that we take when we compare
them as we explain more fully end-to-end systems.

Feature engineering methods utilize feature extractors that have no learnable parameters.
So, if we denote the feature extraction process as f, v is a feature vector and x is an input
signal, we have: v = f(z). This f can be a Fourier Transform or a zero-crossing rate calculator
etcetera. The important point is that there are no free parameters that can be modified by a
learning algorithm. All parameters, such as hop and frame length in STFT are constant.

In contrast, feature learning procedures allow f to be dependent on learnable parameters,
that we shall denote as 0. This way, we obtain: v = f(x; 0rg). This v can 1-dimensional or 2-
dimensional as in the feature engineering method. However, here the objective is to reconstruct
the input or to map the input to another space that has a different property. This v then is known
as a latent representation or latent space. And vectors in latent space may be better suited
for classification than the original input space. This mapping between visible and latent space
is learned through the set of parameters grouped in #zz. The main point of feature learning
methods then is that feature extraction and feature classification is done separately, there are
two training processes that are carried out individually.

In contrast, end-to-end systems combine feature extraction and feature classification into
a single training procedure. Thus, we have: o = g¢(z;0). o being a vector with the class
predictions for the input z where ¢ is the parameter set used to map the input from feature
space to a particular class. The size of the vector/tensor o is the same as the number of classes
that we wish to classify. This way we can see that end-to-ende systems require a higher number
of parameters (the same as feature learning) but they possibly have higher performance.

3.3 Convolutional Neural Networks

Convolutional neural networks date back to the 1980s as in Fukushima et al.’s Neocognitron
[23] and LeCun et al.’s backpropagated handwriting recognizer [44], yet only now have they
been adopted in the multimedia space as the method of choice for processing high-dimensional
raw data: speech, images, music, and video, when big data is available. Without a doubt the
work of Krizhevsky et al. [41] represented the breakout of this technology into the spotlight
in the academy and the public in general. This work achieved first place in the 2012 ILSVRC
[57] competition by a wide margin. Initially these models were used for visual recognition of
house numbers [64], handwritten digits [16], and traffic signs [17]. However they quickly took
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over other more challenging tasks and diversified into other data modalities like we have said.
Convnets take advantage of the property of locality in data and that’s the primary reason why
they have proven to be viable solutions to problems in domains of very different kind.

However part of this successes is the computing environment surrounding convnets, the
large datasets, the training techniques, the hardware accerelation and other concomitant facts
that accompany other popular deep learning models like LSTM and Transformer. However,
convnets have a very special niche of applications due to the special properties of the convolu-
tion operation, the core of convents. In the following we will discuss the primary reasons: a)
the reduced parameter count required for convolving inputs as opposed to the ones required for
doing simple matrix multiplication; and b) a special and very useful form of inductive bias.

The reason of this incredible success that the convolution, the underlying operation of
CNNs, provide convolutional models with a) reduced parameter count and b) a special and
very useful form of inductive bias. We will explain both of this goodness properties of the
underlying operation of ConvNets the core, the heart of the CNNs in the following subsection.
Reduced parameter count is of prime importance because it allows the CNNs to fit an arbitrary
function with less parameters thus it is statisticallly efficient. It requires consequently less data.

3.3.1 Motivation for Using CNNs

Convolution are a weighted sum of neighboring signal values. Thus, but so is the fourier trans-
form, if we take into account (as a kind of analogue of the STFT) if the analogy is drawn
between the frame as the neighborhood in the convolution and then the convolution STFT is
also a convolution but with real coefficients. See Equation.

Convolutions are also a form of template matchers. For example, when we want to detect
edges or to detect corners we use a template of a corner and convolve this template with the
image, the resulting two-dimensional output is a real number whose magnitude tells us the
degree of correspodnence of the image patch and the template. It is the likelihood of the patch
being a corner.

The output of a convolutional layer is called a feature map. It is called such because, if we
consider the two-dimensional case, every point in the feature map represents the likelihood of
matching the feature in the input image. The impressive fact is that we can use convolutions to
process not only images but features map themselves!! These latter being image-like.

3.3.2 The ConvBNReLU Block

The essential component of a convnet is a convolution layer, however, these networks are not
made only of convolutional layers. Rather, convolutional layers are part of a block of operations
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that include:

1. A convolution layer
2. Batch Normalization

3. Rectification

The bundling of operations allow the neural network to be trained to large depths without
hurting the performance of the gradient descent because of exploding or vanishing gradients
problem.

In particular, rectification through ReLLU is the simplest and cheapest in terms of computa-
tional cost. Also there is a biological plausibility argument here. Since it is known that most
neurons have sparse activations (reponses) to a wide range of stimuli, like the negative input
region of the ReLU. Also,

Batch normalization is an operation that involves substracting the batch mean and dividing
by the batch deviation so that the new mean is zero and the new deviation is one. Batch normal-
ization allows the training of deeper models by shifting the covariate shift of the activations.

It is important not to confuse input normalization, which we describe in Sect. 4.4, and batch
normalization, which we describe in the following discussion. In contrast to input normaliza-
tion, which is a normalization done only to the input and is elementwise, batch normalization is
done between any pair of hidden layers in the network.

3.3.3 Pooling

After every convbnrelu block there is usually a pooling layer. This layer is always paired with
convolutions because they work together very well in the task of inducing a translation-invariant
representation in the feature map representation. As an added bonus, pooling allows the pos-
sibility of eliminating redundant information thereby allowing higher layers to represent infor-
mation at a higher resolution level or scale. Computer vision have, historically, used Laplace
pyramids so that features at different scales could be recovered. The combination of convolution
+ pooling is the equivalent of Laplace pyramids in the field of artificial neural networks. This
way we can see that convolution followed by pooling allow deeper layers to process features
at a gross level of detail; less detail and less redundant information. There are multiple ways
of reducing the window size of pooling, the most common is by taking the maximum nubmer
(maxpooling) but there is also mean pooling or average pooling.

The main function of the pooling operator, eliminating redundant information, is taken to an
extreme of reducing information, with global average pooling (GAP) [18]. GAP is an incredibly
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useful operation that sits at the very end of the convnet and summarizes a whole feature map to
a single real number a 1-d tensor of one entry. That can be used to represent a single class log-
probability. For example, if we have are doing a 50-class classification task we could obtain the
log probabilities of a given input by processing the input with the convnet and in the last layer
using a convnet with 50 output channels. The resulting 50 feature maps may be converted to a 1-
d tensor of log-probabilities with the use of a single operation of global average pooling, which
average all elements of each of the 50 feature maps. This operation is effectively equivalent
similar to using average pooling with a window size equal to the size of the input feature map.

In general, pooling is a layer that has no learnable parameters. In order to specify completely
the opration one only needs the window size and the operation (max vs. mean, e.g.). This lack of
parameters is in part the reason why GAP [18] is used with very good results for classification,
where one avoids the overparametrization brought about by the use of densely connected layers
(also known as linear layers). Popular networks such as VGG [66], or EnvNets [73] in case
of acoustic event detection, make use of a last stage of dense connections for classification.
However, it has been known in the community that such topologies offer little advantage and
complicate training because of the much greater parameter count, thus, damaging statistical and
computational efficiency.

21



Chapter IV

Methodology

In this chapter, we describe the main methods used for training our environmental sound clas-
sifier. We start by describing the two publicly available sound collections, small-scale special-
ized ESC-50 and the much larger audio-tagging dataset, Audioset. Then, in the next section,
we describe and explain the different data augmentation techniques: audio-specific ones and
data-agnostic techniques. No matter the type of dataset augmentation its purpose is to bolster
generalization and robustness to the classification problem.

4.1 Sound Datasets

In this section we describe the two sound datasets used for this work. The bulk of the exper-
iments were carried out in the environmental sound collection ESC-50. In the latter stage of
research, however, a much larger sound dataset was used as a platform from where to pretrain
a sound recognition model to solve the ESC problem in ESC-50. This approach of using two
datasets is known as trasductive learning and allowed us to achieve state-of-the-art performance
on the single-task ESC-50 corpus via supervised pretraining on Audioset.

For this work, two publicly available datasets of natural sounds were used: ESC-50 and
Audioset. ESC-50 is actually part of a set of closely-related datasets: ESC-10, ESC-50, and
ESC-US. ESC-10 is a proof-of-concept small-scale dataset made from a subset of 10 classes
takes from the fifty classes in ESC-50. ESC-50 contains 40 examples per 50 categories amount-
ing to 2,000 audio recordigs. Meanwhile, ESC-US is a much bigger, 250,000 audio recordings,
compilation of unlabeled environmental sound. It is a dataset specially designed for the devel-
opment of unsupervised learning approaches for ESR. The common feature of the ESC family
of datasets is that all of them are environmental sounds in the sense defined in section 1.1, thus,
there is no music and no speech. All audio samples were taken from the sound sharing project
Freesound. On the other hand, Audioset is a large-scale dataset of natural sounds taken from
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ESC-50 Audio Set
Number of examples 2,000 1,183,235
Duration of sample S5s 10s
Annotation A single label Tags (Multiple labels with no temporal resolution)
Acoustic Contents | Environmental only No restrictions
Number of classes 50 527
Performance metric 5-fold accuracy mAP/AUC/d-prime

Table 4.1: Comparison between the sound datasets ESC-50 and Audio Set.

YouTube videos, that is the samples contain music and speech. Just like ESC-50, Audioset
is labeled manually, however, besides this point, the aforementioned datasets share very few

commonalities. The following table compares the two of them.

4.1.1 ESC-50

ESC-50is a compilation of 2,000 recordings taken from Freesound project grouped in 50 classes

of 5 different categories:

Animal Sounds Human Sounds | Natural Indoor Sounds Outdoor Sounds
Landscapes
Dog, rooster, Baby crying, Rain, sea Knocking, Helicopter,
pig, cow, frog, sneezing, waves, crackling | mouse click, chainsaw, siren,
cat, hen, insects, | clapping, fire, crickets, keyboard typing, | car horn, engine,
sheep, crow breathing, chirping birds, creaks train, church
coughing, water drops, (wood/door), can | bells, airplane,
footsteps, wind, pouring opening, fireworks, hand
laughing, tooth water, toilet washing saw
brushing, flush, machine,
snoring, thunderstorm vacuum cleaner,
drinking/sipping alarm clock,
ticking clock,
glass breaking

Figure 4.1: ESC-50 sound examples are grouped in four distinct semantic categories: animal
sounds, human sounds, natural landscapes, indoor sounds and outdoor sounds.

The selection of classes of this dataset is meant to be comprehensive while not too complex
while, at the same time, mantaining ease of use. The downside of this approach to design is that
it somewhat small; it contains 40 examples per class. If there is substantial intraclass variability
then there will be problems with generalization. However, even taking into account all these
cons, ESC-50 is widely used precisely because of its simplicity and good coverage of the wide
spectrum of what an environemtnal sound is. For practitioners, ESC-50 is quite useful as in
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a first stage of the technological development stage and for prototyping general acoustic event
recognizers.

Owing also to its adoption in the community is the fact that humans have been tested using in
ESC-50 giving as a result 81.3% accuracy. Human listeners apparently have difficulty recalling
more some sounds that other, 34.1% and 51% for example for washing machine for crickets
while 100% for baby crying or dog and rooster.

All recordings are single channel, 44.1 kHz, in Ogg Vorbis file format, organized in 5 groups
called folds so that a fold-cross-validation technique can be used readily. The fold number of a
file is part of its name and is used in machine learning workflows to evaluate using 5-fold cross
vailation accuracy which is the standard way of reporting results of works that use ESC-50.

As a summary ESC-50 is a widely used dataset with a useful/good set of environmental
sounds that have been adopted as the de facto go-to dataset for environemntal sound recognition.
The only problem it its small number of examples which could impair generalization. However,
researchers with a specific application in mind resort to acquired capturing their own data, see
section 3.2. Finally, another solution to this problem that has not been thoroughly studied is
to use the unlabeled ESC-US to train an encoder of environmental sounds as a previous stage
to apply finally the learned representations to help solve the supervised problem of ESC-50
classification. This has not yet been explored fully, as far as we know and it is sometimes called
unsupervised pretraining or unsupervised representation learning, see below Sect. 6.1 for more
information.

4.1.2 Audioset

Audio Set [24] is both a dataset and an ontology of audio events. As an sound dataset Audio Set
seeks to provide a comprehensive coverage of real-world sounds at the scale and magnitude of
what ImageNet provides for images. As an specification of an ontology, the goal is to provide
a well-structured hierarchy that can aid human labeling by allowing the human to quickly and
directly find the set of terms that best describe a given sound. Given this goal of ease of use it
was important during the development of the set of events to add categories without any overlap
or duplication. The structured set of audio event categories provided is called the Audio Set
Ontology.

It is important to notice that, in constrast to ESC-50 above, Audio Set considers all sound
events (environmental, speech and music) rather than a limited domain, e.g., environmental
only. Given the importance of creating a general-purpose audio event recognizer, it was neces-
sary to define the set of events the system should recognize (the aforementioned ontology).

Audio Set excerpts were taken from the YouTube Corpus, a set of labeled YouTube segments
comprising an identifier, start time, end time and one or more labels. The segments in this
dataset are all 10 seconds long except when the underlying video has a shorter duration. It is
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important to note that each segment carries one or more ontology class labels.

The overall count of labels is not uniform. “Music” is particularly common, present in 56%
of the segments. Single segments can have multiple labels (on average 2.7 labels per segment).
For this reason, class imbalance could be an issue when training using Audio Set. Nevertheless,
the unbalanced training set is the one more commonly used because of its large scale. The
unbalanced train set contains 1,771,873 segments and the evaluation set contains 17,748.

In summary, the Audio Set dataset is a collection of general audio events, comprising an
ontology of 632 audio event categories and a collection of 1,789,621 labeled 10 sec excerpts
from YouTube videos. The associated ontology is hierarchically structured with the goal of
covering all acoustic distinctions made by a typical user.

4.2 Data Augmentation

4.2.1 Sound Data Augmentation

It is costumary to extend sound dataset, be it speech [59], animal [69], urban [60] or envi-
ronmental [73], by transforming datapoints into others that are semantically and perceptually
equivalent. For example, human ears perceive as the same a sample of speech that has been
shifted in time. Other times, the transformation retains the same label eventhough the sound
may be perceived different or have a different signification. As an example, we can give a com-
mon data extension operation: spectral masking. In which, only a part of the whole frequency
spectrum of a sound datapoint is preserved and the rest is discarded. Provided that the retained
part is informative enough the label of the new datapoint should be the same as the original.

This way we can divide sound augmentation operations in those that give no change in
signification and perception and those that do. Adding noise is another example of an operation
that introduces or distorts the original signal. In the machine learning community, we have
examples of phase shifting [60], spectral masking with temporal masking [52].

Two data augmentation schemes were used in this work. But before any of these where
applied a simple preprocessing was introduced. This preprocessing consisted on normalization
followed by padding-cropping as we will detail now. Thus, the first step of this preprocessing
in our pipeline is normalization. Normalization ensures that the input signal is within the range
[-1,+1]. * — x/2¥~1 where N is the resolution of the sound waveform in bits, and the
exponent is one less from zero because the whole range is used to represent negative and positive
numbers, it goes from [—32, 767, +32, 768]. Amounting to a total of 2V = 216 = 65,536.
Usually N = 8 for most sound file formats. Thus, in our experiments the first preprocessing
step is to divide the signal by 27 = 32, 768 to make it more easier for neuronal units initialized
with weights around zero and variance of one to process them more easily.
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The other step in the preprocessing state is one that turned out to be crucial for attaing good
performance, see Results chapter. This preprocessing amounts to the following: let 7" be the
input length of a network seconds. During the training phase, we padded 7'/2s of zeros on
each side of a training sound and randomly cropped (selected a segment) a 7-s section from the
padded sound. In contrast, during the testing phase, we also padded 7'/2s of zeros on each side
of a test sound and cropped 10 7" — s sections form the padded sound at regular intervals. We
then input these 10 crops to the network and averaged all softmax outputs.

Following [74] we also experimented with a regime of strong sound augmentation. Whereas,
in addition to zero padding and random cropping, scaling was performed by multiplying with
a factor that is randomly selected between [0.8, 1.25] and scaling by increasing the gain with a
factor randomly selected from —6 dB to +6 dB. Crucially, scaling was performed before zero
padding and gain augmentation was performed just before feeding the sound to our model (after
padding).

Previous works have achieved time-invariance through the use of convolutional boltzmann
machine [36], convNets [51], [31]. At other times, convolution can be shuned and a multilayer
perceptron can model phase-invariant filters when it’s overcomplete or overparametrized [75].

It is important to note that this "costume" has a purpose and its function is to increase
percentage points in accuracy the performance of sound recognition because it creates new
data, and so it is especially useful when working with datasets of limited size, which is often
the case given that high-quality sound recordings are with high-quality labels are very expensive
to get.

No noise addition was used since that is more of the speech recognition community and
some environmental sounds are very similar to noise, in its spectral qualities and perceptual
qualities. So to avoid cross-recogntion among classes and so on noise is costumarily not added
to environmental data.

4.2.2 Modality-independent Augmentation

Modality-independent augmentation, or mixup, is a technique to regularize model training by
augmenting the dataset with virtual input-target pairs (z, ¢). It was first proposed at ICLR 2018
by [83]. Since then, this technique has proven useful in the training of large models on large
datasets, see for example [38]. Also, as a way to increase robustness to noise and a form of
regularization [83].

Mixup is based on the principle of Vicinal Risk Minimization (VRM) [13] where a heuristic
of linearity is employed to create a neighborhood around each datapoint. Such linear constraint
smooths out the classification boundary between examples of different classes. In contrast to
other data augmentation methods, mixup is independent of the data modality, it can be applied
equally well to images, sounds, or tabular data because of its inherent generality.
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To introduce the principle of VRM, consider the standard formulation of neural network
training, Empirical Risk Minimization (ERM), [79]. In the context of ERM for supervised
learning, there is a data-generating distribution P, that ponders or weights the loss function
associated with mistaken outputs, those outputs or predictions that do not match with the true
label, resulting in the following integral:

Balf) = [ (7). 0)dPslo) = = 3 0(F () 30 @

where R is the expected risk or expected error, and /(-, -) is the loss function that increases
when the prediction of x, f(z) diverges from its true value y. However, in this case R is replaced
by Rs because now the empirical distribution is used rather than the true data-generating dis-
tribution P(x,y). Moreover, the integral is replaced by a sum because the continuous random
variables are sampled into discrete values.

The problem of ERM is that, although there exist a well laid out theory supporting it, [78],
most modern neural network models do not satisfy the conditions required for the theory to be
applied. Specifically, training by minimizing 4.1 is guaranteed to converge if the model size
stays the same, that is, if the model capacity is not increased as the dataset increases. Modern
works, however, see do not set model capacity to a fixed value, and rather increase model size
as dataset size increases. Nevertheless, even in those conditions model performances are seen to
improve. What is needed is a form of regularization of the model capacity so that the supporting
classical theory can be applied.

In order to solve that issue, VRM [13] replaces the naive distribution estimate Ps with vicinal
distribution v (-, -|x, y):

n

1 o
R, = H;U(:c,y\x,y) (4.2)
where
T=(1-Nz+ (4.3)
g=1=-Ny+ N/ (4.4)

The mixup vicinal distsribution can be understood as a form of data extension that encour-
ages the model o behave linearly the regions between two different training examples. In [83]
it is argued that this linear behavior reduces the amount of detrimental oscillations of the loss
function that ultimately leads to uncertain class predictions, especially when classifying outside
the traning distribution. Linearity is also a good intuitive bias from the perspective of Occam’s
razor since it is one of the simplest possible relationships. Because these reasons we apply
mixup to our training especially when dealing with large sampling frequencies (high resolution
data) and large models. In these cases, models trained with mixup are more stable in terms of

27



model predictions and gradient norms for in-between training examples.

4.3 Architecture and Model Scaling

4.3.1 Architecture

The model architecture proposed is called AclNet, taken from Acoustic CLasification Network,
and it is an end-to-end acoustic pattern classificator. It is fully convolutional and so it ac-
cepts input sounds of all sizes. It process the variable-sized inputs by way of two sequential
stages. The first of these stages consists of one-dimensional convolutions designed to extract
a spectrogram-like representation of the input. The second stage, then, process this 2-D repre-
sentation in a manner similar to other image-processing convnets and outputs a vector of class
probabilities.

One of the defining characteristics of AclNets is that both stages are trained simultenously.
Thus, the feature extracted by the first module is optimized for the task at hand and not based
on heuristics or rules of thumb as is in feature engineering or feature learning approaches.
Higher levels of performance are hence possible because the feature extraction is fine-tuned
to the problem of acoustic detection just as we described in Section 3.3. However, in order
to fully utilize the fine tuning of features it is important to keep generalization error low by
avoid overfitting, that is memorizing the dataset examples. This is why end-to-end learning
systems, and their increased number of parameters require more regularization. This kind of
regularization is provided in our training procedure by the following strategies:

1. data augmentation for sound
2. vicinal risk minimization (mixup)
3. weight decay, or L, penalization

4. dropout operations between layers

These are the main techniques to avoid overfitting in our training procedure and models.
These regularization measures improve performance since we don’t see a degradation of the
test accuracy during training, we only found overfitting when the model capacity is greatly
increased through the application of a 1.5 width multiplier. Please see chapter 5 for further
details about training curves (Sect. 5.1) and scaling outcomes (Sect. 5.2).

In between the feature extraction and feature classification stages we have a transposition
operation. That allows the neural network to work with the intermediary tensor output tensor
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of the first stage to be processed as an image, or grid-like tensor. This transposition changes the
order of the dimensions of the tensor, interchanging the output channel dimension with the

In terms of the properties of the architecture we can say in a high-level summary succintly
that it takes inspiration from two other networks: DaiNet [18] and EnvNet [73]. EnvNets in-
troduced the use of a the filters of 1-d convolutions as a learnable filterbank, transposition and
a Vgg-like image-processing back-end for the last classification stage. From DaiNet we took
inspiration of a fully convolutional network (basically fully connected layers are replaced by
global average pooling) and aggresive pooling in the 1-d stages and a small filter size, to lower
parameter requirementes and enhance statistical and computational efficiency. The result is a
scalable, end-to-end, modern network that can be used for constrained applications or for trans-
fer learning in case of big problems to solve.

A particularly intriguing way to put the overall design of AclNet is by the formula: EnvNet+
DaiNet? = AclINet. Note that DaiNet [18] is squared because, this network is a purely one-
dimensional convnet, thus we translated the convolutional hyperparameters to its two-dimensional
equivalents. For example, instead of using (3) kernels we used 3x3 kernels and so on. Or the
same thing with pooling layers window sizes. Also note that this is an informal way to put
the relationship between the network and the plus sign is not really an sum it is simply the
combination of two very different design paradigms.

Traditionally, within the field of deep learning, acoustic modeling is divided into two distinct
parts: (1) the design of a feature representation of the audio data, and (2) building a suitable
discriminative model based on that representation. Nevertheless, it is often quite challenging
and labor-intensive to find an adequate representation during the first phase above, the so-called
“feature-engineering” process. Additionally, the heuristically designed features might not be
optimal for the discriminative task. By using simpler features, deep neural networks can be
viewed as extracting feature representation jointly with classification, rather than separately
[59].

In order to maximize the representation learning in the convolutional layers, the proposed
network architectures (AclNets) are fully convolutional, that is, without fully connected layers,
only convolutional blocks consisting of batch normalization [35] and ReLLU activation functions
interspersed with some pooling layers. Also, fully convolutional topologies can be applied to
input audio of varying lengths. Through the application of batch normalization and a careful
design of down-sampling layers, the difficulties in training very deep models are overcomed
while keeping the overall computation cost at an adequate low.

The AclNet architectures take as input raw sound waveforms, represented as a long one-
dimensional vector, instead of the traditional hand-tuned features or specially-designed audio-
grams. While designing AclNet the key design elements taken into account were:

Fully convolutional topology: High-dimensional fully connected (FC) layers are present in
most deep convolutional networks for classification. Typically 2 or more fully connected (FC)
layers of dimensions 4096 as in [66], [41] for discriminative modeling, leading to a very high
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number of parameters. Here it is presupposed that most of the learning occurs in the convolu-
tional layers, and with a sufficiently expressive representation from convolutional layers, no FC
layers are necessary. Therefore, a fully convolutional design is proposed [?], [46]. Instead of
FC layers, a single global average pooling layer is used which reduces each feature map into a
single floating point number through an averaging of all activations along the temporal dimen-
sion. This way the network is forced to learn good representation in the convolutional layers,
by removing the fully connected, potentially leading to better generalization.

A large first layer-receptive field: The first receptive field or kernel size in the first convo-
lutional layer is very important since a very large or a very small receptive field won’t be able to
capture enough information for subsequent layers. Thus, similar to the window size for many
MFCC computation, the first layer receptive field is designed to cover a 10-millisecond dura-
tion of the input. A much smaller or larger receptive field was found to give poor performance.
On the other hand, if a small receptive field is used for all convolutional layers such as in [66],
which uses 3x3 in pixel for all layers, a lot more layers would be needed in order to extract
high level features. That substantial increase in depth could be computationally very expensive.
Finally, the sampling rate of the audio affects the receptive field size in the first layer, since a
field size of 80 at 8kHz sampling rate is at a different length scale than at 16kHz sampling rate.

Very deep networks: In order to build very deep networks, a very small receptive field
(3x3) 1s used for all layers but the first 1D convolutional layers. Historically, 3x3 receptive
fields were first popularized by [66] for natural images. This design reduces the number of pa-
rameters in each layer and controls the model sizes and computation cost as depth is increased.
Furthermore, we aggressively reduce the temporal resolution in the first two layers by 16x with
large convolutional and max pooling strides to limit the computation cost in the rest of the net-
work [70]. After the first two layers, the reduction of resolution is complemented by a doubling
in the number of feature maps. In the visual domain this change in resolution and the number of
features maps leads to more specialized filters at the higher layers (e.g., feature maps respond-
ing to faces) and more basic filters at the bottom (e.g., feature maps responding diagonal lines).
We use rectified linear units (ReLLU) for lower computation cost, following [82], [66].

Batch Normalization: Some auxiliary layers called batch normalization (BN) [35] that
alleviates the problem of exploding and vanishing gradients, a common problem in optimizing
deep architectures, are adopted here. BN normalizes the output of the previous layer so the
gradients are well-behaved. This makes possible training very deep networks (M18, M34-
res) that were not studied previously [62]. Following the example in [35], we apply batch
normalization on the output of each convolutional layer before applying the ReLLU non-linearity.

4.3.2 Model Scaling

The principal goal of all scaling methodologies is to find an optimal point in the trade-off be-
tween accuracy (or, more generally, performance) and model cost (in size and latency). In this
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setting, optimal is taken to be a function of the desired application and deployment platform.
So there is no way a researcher can say in advance what the best operating condition will be
for a given application. Only we can hope for in to have the best performance with the least
computational cost. And if we think in terms of the graphs shown in Section 5.2 the most effi-
cient models are those in the upper left corner of a plot of parameter count vs. performance, or,
alternatively, operation count vs. performance.

Performance metrics are also application-dependent. In certain cases, latency is a better
measure than simply operation count. In others, the accuracy is not the best way to measure
performance and because a low false-positive rate is critical or very important.

Through the use of certain scaling hyperparameters models can be increased in size (scaled
up) or decreased in size (scaled down). Prominent among these hyperparameters is the width-
multiplier which is very simple and convenient.

Another simple scaling procedure is to increase the resolution of the input data. In the
case of images, the resolution is measured in the number of pixels. In the case of sound, the
"resolution" corresponds to the sampling rate. A high sampling rate equals a better quality
of the sound for a hearer. Thus, the sampling frequency is, in fact, a scaling hyperparameter.
And similarly, we can increase it or decrease depending on whether what we want to optimize:
performance or model size.

There are other less straightforward scaling procedures. One of this is the use of compact
low-resource cheap versions of convolutions. An standard convolution applies a single filter to
all input channels and then sums up the resulting output of each convolution. However there is
a lot of wasted computation if we can do the same operations by factorizing the application to
all filters and summation operation that we just described.

4.4 'Training and Evaluation

Datasets for machine learning, being usually too large to fit unchanged in memory, are usually
partitioned in equal-sized portions named mini-batches, or just batches. The partioning of the
datasets, training and evaluation datasets, is very important in order to understand the training
procedure of machine learning models that process large amounts of data. Specifically, the
training process is a doubly iterated procedure, a loop within a loop. One outer loop iteration
is called an epoch and an epoch represents a single pass through the whole training dataset.
Thus, to run through a single epoch it is necessary to run through number of batches = dataset
size / batch size times. This way inner loop is indexed by the batch number. The batch size is
inversely related with the dataset size.

The training of AclNet is done with the cross-entropy criterion using momentum stochastic
gradient descent. Weights of EnvNets were initiliazed randomly. This is partially because it is
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reported that handcrafted weight initialization such as gammatone initialization [61] does not
notably improve the classification performance [75], [31]. However, the main purpose is to learn
another feature representation that complements handcrafted features such as mel filterbanks.

In all of our experiments, we used stochastic gradient descent with momentum of 0.9, weigth
decay of 2 x 10~ 4, and a batch size of 64. We trained the model using the following learning rate
schedule with 3 different phases: 0.2 for the first 500, 0.04 for the next 1000, and 0.016 for the
last 500, for a total of 2,000 epochs for each of the five folds. Also, for the first 100 epochs we
disabled mixup as a form of warming up weight actualization and improve initial convergence.
To improve convergence, we used a 0.1x smaller learning rate for the first warmup epochs (10).
We then terminated training after 1,000 epochs. We doubled the epochs and the learning rate
schedule when using mixup, as we mentioned in the Results section.

We apply 50% of dropout [67] to the convolutional layers to prevent overfitting with a low
value of 10%. Compare this value to the one commonly used for fully connected layers, 50%.
This is in part because of the weight sharing feature of convolutions as we discussed earlier. In
addition, we apply batch normalization [35] to all the convolutional layers to accelerate learning.

In ESC-50, there is no test set, rather only a validation set that iterates across different folds.
That is, validation is done via the procedure known as fold cross-validation. The dataset itself is
already preconfigured split in five folds so that this validation procedure is standardized. Each
sound file has in its name a number between zero and four corresponding to the subset or fold
in which it belongs. A sound file can only belong to a single fold making these five folds a
partition of the whole set. This pre-established fold splitting of the dataset is very convenient
for comparison across different models and training procedures.

4.5 Transfer Learning

A recurrent working hypothesis in the deep learning community and, especially, in computer
vision is that network architectures that perform better on a large dataset like ImageNet neces-
sarily perform better on similar datasets and in similar tasks. Examples of similar vision tasks
are: classification on different datasets [65], [21], image segmentation [28], [14] or object de-
tection [33]. A related assumption or hypothesis is that better performing network architectures
can lead to learning better features that can be transferred across semantically similar tasks.
In this work, we test the aforementioned hypotheses in the context of environmental sound
recognition and to test the transferability of a large-scale model (our AclNet) trained to extract
relevant features from the large-scale dataset to the field to ESC-50. The result of this investi-
gations will allow us to ascertain the transferability of both AudioSet features and our AudioSet
classification architecture (the AclNet architecture).

We demonstrate the training of AclNet in Fig 4.3. z; is training input, an element of the
dataset AudioSet, and y, is the target of the associated element of AudioSet. F'Csygi0se: 1S the
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head, a fully connected layer for AudioSet tagging. There are several options available to us
when we one says that one is going to transfer from one dataset to another. To be more precise,
we present to different strategies that were implemented in this work in the following list:

1. Training an audio-tagging model from scratch. All parameters are randomly initialized.
The model is an instance of AclNet, except for the final fully-connected layer which de-
pends on the task dependent number of outputs. It is important to note that this particular
configuration is used as a baseline to be compared with other transfer learning strategies,
since it is no real transference of knowledge, because of the random initialization and
because of training from scratch.

2. AclNet is used as a feature extractor. For the new ESC-50 task, the embedding features of
audio waveforms are calculated by using AclNet. Then, the embedding features are used
as input to a classifier, such as a fully-connected neural network. When training on the
new task, the parameters of the AcINet are frozen, held constant and not trained. Only the
parameters of the classifier built on the embedding features are trained. Fig. 4.3b) shows
this strategy, where ESC-50 is the new task, and F'Cggc_50 is the fully connected layer
for the new task. The AclNet is used as a feature extractor. A classifier is built on top of
the extracted embedding features.

3. Fine-tune AclNet. AclNet is used for the new task, except the final fully-connected layer
which is randomly initialized. All parameters are fine-tuned on the new task. Fig 4.3 ¢)
demonstrate fine-tuning in our AclNet transfer framework.

Much of the analysis in the corresponding section in the Results chapter (Sect. 5.4 requires
comparing accuracies across the two datasets of different levels of granularity. When fitting
a neural network model to accuracy performance across multiple datasets, it is costumary to
consider the effects of model and dataset to be add up, as if their effect were independent of
each other but interact through a simple sum. Therefore, using the raw five-fold accuracy of
ESC-50 as a variable used for comparison can be problematic. In particular, an increase of one
percent in accuracy is different if it is relative to a baseline accuracy. In cases like this, the logit
transformation is commonly employed [40] for the analysis of proportions, like accuracies,
and the linear additive change ¢ in logit-transformed accuracy has a simple interpretation as
a multiplicative change as exp d when a correct prediction is made. We now give the logit
transfomation as follows:

Neorrect + Nincorrect Nincorrect Nincorrect

logit ( Ncorrect ) +§= log ( Ncorrect ) 45 = log (M exp(5)> 4.5)

As an added bonus, results after the logit transformation do not depend on whether perfor-
mance is measured in terms of accuracy or error rate, because logit(p) = —logit(1 — p). With
this in mind, we end this section by mentioning that, as will be shown in the next chapter, our
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results reveal clear advantages of transferring features and architectures in the context of sound
recognition. AudioSet weights provide a starting point for features on a the new classification
task. However, perhaps what is needed is a way to learn how to adapt features, similarly to the
problem of zero-shot or few-shot learning.

34



Layer Stride Out dim Out  Kemel
Chans size
Convl 51 '1,1,20480/51 Cl 9
Conv2 52 64,1,20480/(5152) 64 5
Maxpooll 1 64,1,128 64 160/{5152)
Layer Stride Out dim Out  Kernel Size
Chans
Conv3 1 32,64,128 32 3x3
Maxpool2 1 32,32.64 32 2x 2
Conv4 1 64, 32, 64 64 3 x3
Convs 1 64,32, 64 64 3x 3
Maxpool3d 1 64, 16, 32 64 2x2
Convt 1 128,16, 32 128 3 x3
Conv7 1 128,16, 32 1280 3= 3
Maxpoold 1 128, 8,16 128 2x2
Conv8 1 256, 8,16 256 3x3
Comv9 1 256, 8, 16 256 3x3
Maxpools 1 256.4. 8 256 2x2
Conv10 1 512, 4.8 512 3x3
Convll 1 512, 4.8 512 3x3
Maxpoolt 1 512,24 512 2x2
Convl2 1 50,24 50 1x1
Avgpool 1 a0 50 2x4

Figure 4.2: The upper table includes AcINet low-leve features, with 1.28s 16kHz samples as
input. An input dimension of 20,480 samples. (S1,S2,C1) are the stride of the first and second
layer, and the number of channels of the first layer, respectively. We tried different values to
ascertain the optimal values of these hyperparameters. The last kernel size is adjusted based on
the stride in order to output a fixed dimension for the next section.
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Figure 4.3: a) AclINet is pretrained with the AudioSet dataset. b) For the new task, AclNet is
used as a feature extractor. A classifier is built on the extracted embedding features. The shaded
rectangle indicates the parameters are frozen and not trained. c) For the new task, the parameters
of a AcINet are initialized with a AclNet pretrained on AudioSet. Then all parameters are fine-
tuned to the new classification task.
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Chapter V

Results and Discussion

In this chapter we discuss and present the most important results of our work. First, the learning
curves which are plots of training accuracy versus training cycles are presented in order to
visualize the improvement obtained by our training methods and architectural choices. Second,
the results on scaling up and down the AclNet architecture is done to obtain a family of models
that may have lower accuracy but be more efficient with parameters and operations. Finally,
in the last two sections we compare the state of the art and present the results of transferring
AclNet features from AudioSet to ESC-50.

5.1 [Initial Experiments and Learning curves

First, we conducted experiments with the aim of finding the best hyperparameters for our low-
level feature extraction system in order to demonstrate the effectiveness of raw signal training.
These initial experiments were performed on the validation set.

Particularly, we compared the accuracy for different values of the input length of the sound
files. Candidates for this length were chosen between 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 seconds, follow-
ing [73]. In the latter work, the authors first simplified their network for raw feature extraction
so that the low level features were obtained with a single convolutional using a filter size of
sixty-four, the same filter size used for logmel architectures [53]. In contrast, we do not sim-
plify the network and use the full low-level feature extraction showed in Fig. ??.

We were able to reproduce the result in Tokozume et al. [73], by finding that accuracy is at
is highest when the input length is between 1s and 1.5s, with a very small difference of perfor-
mance within that range. Very large (5s) or very small (0.5s) input lengths degrade performance
quite considerably, suggesting that the random cropping procedure we did later (see Sect. 4.2.1)
is essential for the model to receive enough information without overfitting. Too few informa-
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tion (as in 0.5s of input length) and learning cannot proceed with enough accuracy and speed.
Conversely, too much signal length (5s, e.g.) and overfitting ensues. Following these results,
we set the input length to be 1.5 seconds or equivalently 72,000 samples when using a 48kHz
sampling frequency.

In Tokozume et al. [73], analysis showed that two convolutions of kernel size 8 worked
best for this dataset. So it is an indication or corroboration of current results. our own results.
Our experiments confirmed that two convolutions being optimal, but we also found that slightly
reducing the kernel size of second convolution had no impact on accuracy. Our best setting is
with kernel sizes of nine and five for the first two convolutions.

In order to determine the choice of other low-level feature parameters we did a grid search
of the parameter space over the ranges: number of channels 8, 16, 32, stride in the first layer
2,4, 8, and stride in the second layer 2, 4.

We trained AclNet using both standard convolution (SC) and depth-wise separable convo-
lutions (DWSC) settings with width multiplier of 1.0, and found the values of (C1, S1, S2) =
(8,2,2) for SC and (16,2,4) for DWSC gave the best accuracy. For the remainder of experi-
ments, we will default to using these best settings for SC and DWSC. The experiments showed
that there was about a 3% difference between the best and worst parameters for each of the
settings. The best result in both cases was not the highest complexity, which is (32,2,2). We
suspect the heavier low-level feature network settings might be overfitting, and that with more
training data we could reach a different conclusion.

In theory, data augmentation is a useful way to prevent a system from overfitting and help
regularize (and improve accuracy) especially when training large models. We apply mixup,
see Sect. 4.2.2, and a set of sound-specific augmentation techniques, Sect. 4.2.1. In figure
5.1 we provide experimental evidence that it is indeed the case that sound data augmentation
and mixup are effective in improving performance both, separately (curves green and red) and
combined (purple curve). This allows us to conclude that, used in combination, both forms of
augmentation the difference in training they make is beneficial and greater than the one obtained
when using any one of them separately.
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Figure 5.1: Comparison of four learning curves. Note the beneficial effect of sound augmenta-
tion (broken red curve) , and mixup (broken green curve) and both combined (purple). Baseline
here means the same architecture without mixup and without sound data augmentation. Test
accuracy saturates roughly at the same time (750 epochs) in all cases.

All experiments shown in Fig. 5.1 were done using a width multiplier of 1.0 and standard
convolutions. As mentioned previously, we see an obvious improvement with each individual
augmentation, and that mixup by itself is more effective than the other form of augmentation.
The best result was achieved when augmentation was combined with mixup, which had an
absolute improvement of more than 5% above the baseline without any augmentation. We note
mixup is conceptually similar to between class learning [74], which was also shown to work
well for ESC-50, but not in our experiments.

Finally, we experimented with the choice of the hyperparameter v in mixup, and found that
values between 0.1 to 0.2 worked well for the larger size architectures, thus for the remainder
of experiments, we default to using this combined augmentation with mixup o = 0.1.

The learning curves in Fig. 5.1 show the relationship between the performance and the num-
ber of training epochs. Previous works [59], [42], [18] described experiments were conducted
using different numbers of training epochs. The figure shows that validation accuracy of EnvNet
with various number of training epochs. This figure shows that standard learning approximately
750 training epochs are sufficient for ESC-50; and this number is sufficient for other training
configurations. This is in contrast to what [74] found for their mixing method, between-class
learning: the performance of it was lower than that of standard learning when using less than
600 training epochs. Between-class learning improve accuracy only when a sufficiently large
number of training epochs is used. The number of training epochs also increase when there are
many classes. In contrast, our methods do not require larger training times, but the convergence
time do increase with the number of classes, as we saw when training AcINet with AudioSet,
see Sect 5.4.
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Sampling | Conv LLF LLF HLF HLF Total Total Width Accuracy
rate type params MMACS params MMACS params MMACS multiplier | (%)
&) x) (k)

16k DWSC | 1.44 4.35 13.91 293 15.35 7.28 0.125 75.38
16k DWSC | 1.44 4.35 153.43 31.07 154.87 3542 0.5 80.40
16k DWSC | 1.44 4.35 567.92 113.7 569.4 118.1 1.0 80.90
4.1k DWSC | 1.81 17.98 13.91 2.96 15.72 20.94 0.125 75.50
4.1k DWSC | 1.81 17.98 153.43 31.33 155.23 49.31 0.5 81.75
4.1k DWSC | 1.81 17.98 567.92 114.6 569.73 132.59 1.0 83.10
4.1k SC 6.99 80.9 77.21 8.88 84.21 131.17 0.125 82.30
4.1k SC 6.99 80.9 1190.0 132.72 1197.0 255.01 0.5 83.95
4.1k SC 6.99 80.9 4730.0 524.67 4737.0 646.97 1.0 85.0
4.1k SC 6.99 80.9 10620 786.56 10627 867.45 1.5 85.65

Figure 5.2: ESC-50 five fold accuracies with AcINet at select configuration of parameters and
mult-adds. Note the degradation of performance with decreasing width and resolution. Bene-
ficial tradeoffs can be made in certain circumstances, e.g. 81.75% accuracy at almost 10x less
parameters (sixth row).

5.2 Model Scaling

In this section we first investigate the effects of depth-wise convolutions as well as the choice of
shrinking by reducing the width of the network and the resolution of the input sound (sampling
frequency) based on the two hyper-parameters introduced in Sect. 4.3.2: width multiplier and
resolution multiplier. We then investigate AclNets capacity to scale down and still classify
accurately within certain budget constraints.

First, we show results for AclNet with depthwise separable convolutions compared to a
model built with full convolutions. In Table 5.2 we see that using depthwise separable convolu-
tions compared to full convolutions only reduces accuracy by about 1% on ESC-50 was saving
tremendously on multiply-adds and parameters.

Table 5.2 shows the accuracy, computation and size trade offs of shrinking the AcINet ar-
chitecture with the width multiplier. Also, table 5.2 shows the accuracy, computation and size
tradeoffs for different resolution multipliers by training members of the AclNet family with re-
duced input resolutions. On the other hand, based on the Fig. 5.3 it can be said that accuracy
drops off smoothly across resolution. Also, as can be seen in the Fig. 5.3 accuracy drops off
smoothly until the architecture is made too small.

To understand the tradeoff between complexity and accuracy we ran three sets of exper-
iments using 1) 16kHz input with depth wise separable convolutions, 2) 44.1kHz input with
DWSC, and 3) 44.1 kHz input with standard convolution (SC). For each set, we did the 5-fold
validation with width multiplier configured at 1/32, 1/16, 0.125, 0.25, 0.5, 0.75, 1.0 and even
greater than one, 1.5 and 2.0. Figure shows the accuracy versus the mult-adds for each of the
settings, color-coded by sets. For each of these settings, increasing complexity generally led
to better accuracy. The exception is at the highest width multiplier, where it is possible that
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Figure 5.3: Graceful degradation of 5-fold accuracy for different resolutions and convolutional
operations. The greater the curve abuts to the upper left corner the better the tradeoff one can
obtain by scaling down a given model. In particular, the blue curve provides the best tradeoffs
in general (16 kHz and depth-wise convolution.

we encounter diminishing returns. In all cases, the width multiplier below 0.25 accentuates the
drop in accuracy. Another observation is that for the same high-level features settings, 44.1 kHz
sampling rate improves accuracy by around 2%.

Table 5.2 shows a subset of these experiments, with details of low-level features and high-
level features overall complexity and accuracy. Our best accuracy of 85.65% was acheived
with 44.1 kHz sampling rate, standard convolution and 1.5 width multiplier. At the time of
this writing, this is the best single system accuracy reported for ESC-50 (second overall behind
an ensemble system [58]). With depth wise separable convolution models, we can see that the
total parameter and mult-adds are significantly lower than standard covnoltuion for the same
width-multiplier. The result on 44.1 kHz, depth-wise and 0.5 width multiplier has 81.75%
which exceeds human accuracy of 81.3% [54], was achieved with only 155k parameters, and
49.31 mult-adds. We note that human accuracy is also exceeded with standard convolution,
width multiplier of 0.125, a model that has a modest 84k parameters and 131.17 mult-adds.
As a comparison of complexity, EnvNet-V2 [74], which at the time has the best single model
accuracy of 84.9% uses 101 million parameters and 1033 mult-adds. Our best model with
accuracy of 85.65% has about a tenth of the parameters and sixteen percent less operations.

5.3 Comparison with the State-of-the-art

With the previous initial experiments we determined the detailed hyperparameters of our front-
end system. Now, we compare the performance of our completed design to logmel-CNN [53],
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Model Accuracy
AclNet (42 kHz, SC) 85.65%
EnvNet-v2 (best) [74] 84.90%
CNN pretrained on AudioSet [42] | 83.50%
Human accuracy [54] 81.30%
logmel-CNN (baseline) [53] 76.90%
Soundnet [4] 74.20%

Table 5.1: Leaderboard of the best models for ESC-50 classification. The accuracies are stan-
dard five-fold accuracies. Source: https://github.com/karolpiczak/ESC-50. Re-
trieved Febraury 2020.

human accuracy, EnvNet-v2 [74], the transferred network of Kumar et al. [42], SoundNet [4]
on the validation set, which at the time of writing were the best performing neural network
architectures. As we can see in the table, our model beats the current state-of-the-art by 0.75%
accuracy percentual points. This result is noteworthy because it adds weight to the hypothesis
that end-to-end networks are beneficial in fact, superior to hand-crafted feature extractors and
discriminators. Moreover, this result indicates that our network model learns a set of features
capable of surpassing the classic mel-filterbank.

In [73] the authors proposed extending their CNN that takes raw waveform with a logmel-
CNN that takes logmel features. Here we do not combine networks because ours is too big by
itself and that would stray us off from one of our main goals which is use as few parameters as
possible. For this reason the use of ensembles was not tried in this experimental work, but, we
hypothesize that it will be of little value given the considerable gap between the logmel-CNN
and our results (approximately 9%). However it would be interesting to test this hypothesis in
the near future.

As is customarily done, our model was evaluated with a 5-fold cross-validation scheme with
a single training fold used as the validation set; thus, each model trained with 1,200 samples,
40 per class divided by 5, one for each fold. We used the fold decided by the designer of the
set, Piczak [54]. Finally, we will see in the next section that architecture beats the non-neural
network SOTA of 86.5% and for quite a wide margin with supervised pretraining meaning that
the features that it extracts are good fit for a transfer. Or equivalently that the tasks are very
similar semantically.

5.4 Transfer learning

To investigate the generalization ability of AclNets, we transfer this family of neural networks
to ESC-50 classification task. Table 5.4 shows the 5-fold cross-validation accuracy of AclNet
system. Sailor et al. [58] proposed a state-of-the-art system for ESC-50, achieved an accu-
racy of 0.865 using unsupervised filterbank learning with a convolutional restricted Boltzmann
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STOA [58] Scratch Fine-tune Freeze
Acc. 0.865 0.843 0.955 0.922

Table 5.2: Comparison between the work of Sailor et al. [58] with the best results so far, and
our different transfer methodologies, as explained in Sect. 4.5

machine. Our fine-tuned system achieves an accuracy of 0.955 outperforming previous state-of-
the-art systems by a wide margin. The feature extraction systems that freeze the earlier stages
of AcINet achieve accuracies of 0.922. On the other hand, training our model from scratch
achieves an accuracy of 0.843. Using an AclNet for the initialization of the feature extractor
achieves the best performance. Finally, both the fine-tuned model and the model using the
AclNet as a feature extractor outperform the models trained from scratch.

Numerous previous works have demonstrated the superiority of features learned from data
over generic, hand-engineered features. Later it was found, that given the availability of large
quantities of training data provided by large-scale datasets like ImageNet, features learned
by convolutional neural networks could substantially outperform previous feature-extraction
methodologies. It became evident that representations also provided accuracy gains over hand-
engineered features when transferred to other tasks.

Our results reveal a clear advantage of transferring features among different natural sound
datasets. However not all features are transferable as we shown when the weights are held
constant. The best fixed acoustic features do not come from the best AcINet trained. Fine-
tuning these best models improves performance on ESC-50 dataset. Surprisingly, however, the
value of the architecture proposed persists showing us that it is capable of extracting meaningful
representations from raw sound waves.

To summarize we provide our main results in the list:

e Our best transfer learning approach is not the one that keeps the acoustic features fixed
obtained during pretraining. However, it is important to note that features from AclNet
trained on AudioSet consistently outperform features obtained when training from scratch
on AudioSet.

e Our architecture transfer well across audio-tagging and audio classification tasks even
when weights are best fine-tuned. On a small fine-grained classification dataset like ESC-
50, fine-tuning does provide the expected benefit over training from random initialization.

e When fine-tuning is introduced, AudioSet accuracy has a much stronger value, (accuracy
= 95%) with a state-of-the-art performance in ESC-50 classification task, indicating a
strong success of transference across both datasets.

Given the differences between AudioSet and ESC-50, it is not entirely surprising that fea-
tures learned on one dataset benefit from some amount of adaptation when applied to another.
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On the other hand, it is surprising that features learned from a large dataset cannot always be
profitably adapted to datasets that are much smaller, as is the case when weights remain frozen.
Importantly, AudioSet weights do provide an important starting point for features on ESC-50
classification. Moving forward, perhaps in the future what would be needed is new methods
that change the way weights are adapted from one task to another. This issue is related to the
problem of few-shot learning [56]. Finally, it remains to be seen whether methods can be de-
veloped to adapt representations learned fom AudioSet to obtain larger benefits across different
sound datasets and tasks, especially through the use of self-supervision [37].
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Chapter VI

Conclusions and Further Work

6.1 Conclusions

We have presented a novel end-to-end convolutional neural network architecture, AclNet, for
audio classification. AclNet is a scalable architecture that achieved state-of-the-art, 85.65%
accuracy with high compute and better than human level accuracy of 81.75% with only 155,000
parameters and 49.3 million mult-adds. To achieve the low complexity with high accuracy
AclNet used depth-wise separable convolution blocks. The combination of mixup and data
augmentation helped boost the accuracy by 5%, which had a major contribution to achieving
one of the best results reported on the ESC-50 dataset.

Moreover, we proposed a learning method for deep sound recognition that includes regular-
ization via mixup training and avoids overfitting through the use of sound data augmentation.
Our method improved the performance on various scales, two datasets, and data augmenta-
tion schemes (strong and weak). Moreover, we achieved a performance that surpasses the
human level by constructing a deeper network named AclNet and training with our learning
methodologies. The learning approaches implemented here are simple and powerful allowing
improvement to the problem of environmental sound classification.

Additionally, we proposed new model architectures called AclNet based on depthwise sep-
arable convolutions. Some of the important design decisions leading to an efficient model were
discussed. In order to build smaller and faster AclNets we demonstrated the viability of experi-
menting with the width multiplier and resolution multiplier, the scaling hyperparameters, to find
a reasonable tradeoff between cost and performance. We concluded by demonstrating AclNet’s
effectiveness when applied to transfer.

Finally, we assume that the core idea of raw feature extraction is generic and could con-
tribute to the improvement of the performance of tasks that process sound without the need of
computing arbitrary filterbanks or other manually engineered features.
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We propose that the application range of our system is not limited to sounds; our system
could be offer a solution to other signal processing tasks in the future, like seismographic or
electrocradiogram data.

The main contributions of this work are:

e The introduction of a new end-to-end architecture that learns a optimized set of filters to
extract a spectrogram-like representation of sounds, similar to a time-frequency represen-
tation but that is specifically tailored to the problem of acoustic detection.

e Previous methodologies used features taken from other problem domains such as speech
recognition or so. And it was a long-standing question whether or not these features were
the "best’ suited for environmental sound detection.

e We have beaten the state-of-the-art and specifically broken the barrier of the 90% accu-
racy. Well above it, with 95% five-fold accuracy thanks to the transfer learning approach
we have implemented. Other similar transferences have been tried in the past ([42]) but
ours is the one with a much higher performance, (see section 5.4).

e A thorough analysis of the tradeoffs between parameter count and accuracy performance
was carried out so that a system designer can choose the desire scale of the model given
the system contraints and task requirements. In this we followed the well known method-
ology of mobilenets, a form of convnets, but other possibilities are avaialable, see next
section that would potentially give us better parameter efficiency, that is better perfor-
mance with the same parameter count.

6.2 Further Work

In this section we delve into how further work can be carried out regarding the use of automati-
cally evolved architectures and the use of a more recent scaling procedure [72]. Both approaches
are novel and based on computational principled, instead of a hand-crafting of architectures or
the grid-search that we used in this work.

Firstly, it is important to improve on the scaling methodology used and explained in Sect.
4.3.2. Convolutional Neural Networks are commonly developed at a fixed resource budget, and
then scaled up for better accuracy when it is the case that more resources are available. There
are multiple ways to scale a convolutional neural network. The method we used in this work
was primarily based in the scaling of MobileNets [32]. Other approaches scale up the convnet
by increasing the number of layers, [29], from ResNet-50 to ResNet-152. Others instead of
going deeper go wider as in the case of [81]. Less common and/or popular is to scale up the
resolution in order to enhance performance, see for example [34]. Tan et al. [72] proposed a
balanced approach to all these three dimensions (resolution, width and depth) in order to obtain
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better scaling curves, that is, better accuracy with less resources or, said differently, a graceful
degradation of the performance. They called their method compound scaling and leads to better
results if a ratio is mantained between the three parameters.Conversely scaling down is a way of
trading accuracy and efficiency. Modern convolutional networks are overpamaterized and given
the importance of applications in the mobile context as mentioned in Section 1.2 it is important
to find reduced-computation models that are performant.

Secondly, there is a discussion of why convolutions are not entirely appropriate for sound
processing. Sound events are transparent, they can be combined in a polyphonic way. Also
there is no translation invariance in the frequency axis, there is only one in the time axis. Thus,
1-d convolutions are the only reasonable inductive bias, the other is actually invalid in terms of
perceptual quality and hence damage performance. More specifically, the feature map obtained
after the low-level feature extraction is not an spectrogram in the strict sense of the word. A
spectrogram, provides a time-frequency representation that is ordered in time and frequency.
Adjacent frames represent consecutive steps in time while frequencies increase in a fashion that
is monotonic, f; is less than or equal to f; 1, for all values of the index 7. The dimension defined
by i is called feature axis.

A learnable low-level feature extractor that performs filtering by means of convolution pre-
serves ordering along the temporal axis, as is the case in other handcrafted filterbanks. Neverthe-
less, the ordering along this axis is unconstrained when training a learnable convolutional filters.
This present problems when downstream layers or operations require an input that is ordered
along the feature axis. Chiefly among these kind of operations or layers are two-dimensional
convolutions, which compute a feature map representation based on local time-frequency re-
ceptive fields in the signal. Other operations are of the data augmentation class, chiefly among
these is the well-known SpecAugment [52]. A detailed comparison and evaluation need to be
done to evaluate the impact of the lack of ordering or the impact of enforcing a ordering in the
learned filterbank. We can make the assumption that filters that are ordered at the initialization
tend to keep the same ordering throughout training. But the question remains if enforcing or-
dered filters has an effect on performance. It would be interesting as a followup of the current
work to test this and similar hypotheses.

Finally, the way we came up with the network was explained in a previous section (Sect.
4.4) and it required a tedious grid search, that is computational expensive, time consuming and
rather arbitrary. However, there is a principled computational procedure that can be carried
out through the technique known as Neural Architecture Search or NAS. With NAS multiple
architectures are modified and selected via a fitness function, usually a proxy of classification
accuracy. Therefore, to go even further, neural architecture search [71], [11], [84] can replace
the design of architecture to obtain a family of models that can achieve higher accuracy at a
reduced computational cost than previous proposed architecture families, like envnet or mo-
bilenets [32] for computer vision. There is some evidence [72], [40] that searched architecture
families improve over manually designed ones in terms of transference. That is, these automat-
ically designed networks transfer well from one task to another similar or between datasets of
similar characteristics.
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In particular, the study of Kornblith et al. [40] found that ImageNet architectures generalize
well across different computer vision datasets, with small improvements in ImageNet accuracy
spreading to improvements to other tasks and datasets. Nevertheless freezing the weights of
pretrained networks did reduce accuracy of the features learned during pretraining, similar to
the results presented in Sect. 5.4. In general, ours and the results of others including Kornblith
et al. [40] show that transfer is not as good as is when fine-tuning the feature extraction module.

Neural architecture search on AudioSet will allow to increase AudioSet performance just
like Imagenet can be increase through this procedure in [72] for example. Hopefully this way,
sound recognition community progress as fast as other developed areas of machine learning like
computer vision, in terms of efficiency and performance.
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